FREE SHIPPING U.S. >= $10 FREE SHIPPING ON ALL U.S. ORDERS OF $10 OR MORE
EASY RETURNS
SAME DAY SHIPPING
FREE SHIPPING ON ALL U.S. ORDERS OF $10 OR MORE
  • EASY RETURNS
  • SAME DAY SHIPPING
  • FREE U.S. SHIPPING $10+ FREE SHIPPING ON ALL U.S. ORDERS OF $10 OR MORE
  • EASY RETURNS
  • SAME DAY SHIPPING
* Customers must select the Standard Shipping option during checkout in order to receive Free Shipping. If you select Priority or Overnight Shipping additional charges will apply. Not valid on international shipments.

Understanding Magnetic Field Lines

Neodymium magnets are known for their superior strength and durability, a property enhanced by their unique magnetic field lines. But what exactly are these magnetic field lines?

Let's take a look at magnetic field lines as they relate to rare earth magnets, simplifying this complex topic into an easy-to-understand format.

 

What are Magnetic Field Lines?

To start off, we need to understand what magnetic field lines are. Magnetic field lines, also known as magnetic flux lines, are invisible lines that depict the direction and the strength of a magnetic field. They are a visual representation that helps us understand how magnets work.

Neodymium magnets, often called Neo magnets, are a type of rare-earth magnet. They are renowned for their exceptional magnetic force, which is significantly stronger than any other type of magnet.

What makes neodymium magnets stand out is the alignment and the density of their magnetic field lines. Neodymium magnets have a highly concentrated magnetic field. These field lines are tightly packed together, which is why neodymium magnets are significantly stronger than other types of magnets like ceramic or alnico.

With neodymium magnets, the magnetic field extends from the north pole and returns to the south pole, creating a powerful field that allows them to exert more force. 

Magnetic Fields


Magnet Shape Impacts Magnetic Field

The magnetic field lines of a neodymium magnet, like any magnet, are affected by the magnet's shape. In bar and cylindrical magnets, field lines go from one flat face to the other, but the latter concentrates the field more centrally due to its circular cross-section. Disc or ring magnets compress the field towards the middle, resulting in higher field strength near the center line. Spherical magnets theoretically would have straight field lines running from pole to pole with uniform field strength decrease as you move away, but in practice, perfect magnetization is unachievable, leading to distortion. In all cases, field lines emerge from the north pole and return at the south pole.

Magnetic Field Lines by Shape

Related Articles

Suddenly, Magnets are Everywhere. What Happened?!
It all began rather quietly in 1984. Scientists working independently at General Motors and Sumitomo Special Metals d...
Read More
Neodymium Magnets in Aquariums and Saltwater
Neodymium magnets work extremely well underwater. But there’s this cantankerous and inconvenient little catch. And it...
Read More
What are neodymium threaded pot magnets used for?
Threaded neodymium pot magnets combine a traditional threaded male or female attachment into the actual cup of a nort...
Read More
How Air Gaps Impact Magnet Strength
In the world of neodymium magnets, the air gap refers to the precise distance separating a rare earth magnet and its ...
Read More
Neodymium Magnet Glossary
Welcome to our comprehensive glossary of neodymium magnets. As a leading supplier of high-quality magnets, we underst...
Read More
What to Look for When Choosing a Magnet Supplier
When it comes to sourcing magnets for your business or project, you might find yourself overwhelmed by the sheer numb...
Read More